The overall cage geometry of the complex is seen to be based on a closed dodecahedral structure in which the Co and C atoms occupy adjacent positions on a triangulated face. Such a cage structure is in agreement with that previously proposed (Zimmerman, Hall \& Sneddon, 1980) and is consistent with skeletal electroncounting rules (Wade, 1976) which predict a closed polyhedral cage for such a $2 n+2$ electronic system (8 cage atoms, 18 skeletal electrons). Similar cage geometries have been confirmed for isoelectronic cage systems, 1,7-($\left.\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{2} \mathrm{~B}_{6} \mathrm{H}_{6}$ (Hart \& Lipscomb, 1968), $\mathrm{B}_{8} \mathrm{H}_{8}^{2-} \quad$ (Guggenberger, 1969), and commo-[η $\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5} \mathrm{l}_{2} \mathrm{Co}_{3}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{C}_{4} \mathrm{~B}_{8} \mathrm{H}_{7}$ (Finster, Sinn \& Grimes, 1981) and proposed based on the NMR data for the isomeric complex, 3,1,7-($\left.\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{CoC}_{2} \mathrm{~B}_{5} \mathrm{H}_{7}$ (Miller \& Grimes, 1973). In addition, it should be noted that closed dodecahedral cage structures have also been observed for boron clusters with other skeletal electron counts. For example, $\mathrm{B}_{8} \mathrm{Cl}_{8}$ (Pawley, 1966; Jacobson \& Lipscomb, 1958, 1959) and ($\left.\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4} \mathrm{Co}_{4} \mathrm{~B}_{4} \mathrm{H}_{4}$ (Pipal \& Grimes, 1979), which are both $2 n$ electron cage systems, and $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4} \mathrm{Ni}_{4} \mathrm{~B}_{4} \mathrm{H}_{4}$ (Bowser, Bonny, Pipal \& Grimes, 1979), which has a $2 n+4$ skeletal electron count, have each been shown to adopt such a cage structure. Thus, as noted previously (Pipal \& Grimes, 1979) the dodecahedral cage structure appears to be a favored geometry for eight-vertex boron clusters.

In $1,2-\left(\mathrm{CH}_{3}\right)_{2}-3,1,2-\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{CoC}_{2} \mathrm{~B}_{5} \mathrm{H}_{5}$, the atoms $C(1), C(2), B(7)$ and $B(8)$ occupy four-coordinate positions, while Co and $B(4), B(5)$ and $B(6)$ are in five-coordinate positions in the cage. In general the distances and angles observed in the cage are normal and within the ranges observed for metallacarborane complexes (Grimes, 1982). The $\mathrm{B}(7)-\mathrm{B}(8)$ distance, $1.617(3) \AA$, is somewhat short; however, it is longer than the comparable distance, 1.56 (3) \AA, observed between four-coordinate borons in $\mathrm{B}_{8} \mathrm{H}_{8}^{2-}$. Likewise, the $B(4)-B(5)$ and $B(4)-B(6)$ distances are long, $1 \cdot 907$ (3)
and 1.904 (3) \AA respectively, but are again similar to the distances reported between the five-coordinate borons in $\mathrm{B}_{8} \mathrm{H}_{8}^{2-}, 1,7-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{2} \mathrm{~B}_{6} \mathrm{H}_{6}$ and commo- η $\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5} \mathrm{l}_{2} \mathrm{Co}_{3}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{C}_{4} \mathrm{~B}_{8} \mathrm{H}_{7}$.

The bonding of the Co atom to the cyclopentadienyl ring appears normal, with an average Co-ring carbon distance of 2.029 (3) \AA and an average $\mathrm{C}-\mathrm{C}$ ring distance of 1.341 (6) \AA.

We thank the National Science Foundation, the Army Research Office, and the University of Pennsylvania Materials Research Laboratory for support of this research.

References

Bowser, J. R., Bonny, A., Pipal, J. R. \& Grimes, R. N. (1979). J. Am. Chem. Soc. 101, 6229-6236.
Cromer, D. T. \& Ibers, J. A. (1974). In International Tables for X-ray Crystallography, Vol. IV. Birmingham: Kynoch Press.
Cromer, D. T. \& WABER, J. T. (1974). In International Tables for X-ray Crystallography, Vol. IV. Birmingham: Kynoch Press.
Finster, D. C., Sinn, E. \& Grimes, R. N. (1981). J. Am. Chem. Soc. 103, 1399-1407.
Grimes, R. N. (1982). Comprehensive Organometallic Chemistry, Vol. 1, pp. 459-542. New York: Pergamon Press.
Guggenberger, L. J. (1969). Inorg. Chem. 8, 2771-2774.
Hart, H. \& LipsComb, W. N. (1968). Inorg. Chem. 7, 1070-1075.
Jacobson, R. A. \& Lipscomb, W. N. (1958). J. Am. Chem. Soc. 80, 5571-5572.
Jacobson, R. A. \& Lipscomb, W. N. (1959). J. Chem. Phys. 31, 605-609.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Miller, V. R. \& Grimes, R. N. (1973). J. Am. Chem. Soc. 95, 2830-2836.
Pawley, G. S. (1966). Acta Cryst. 20, 631-638.
Pipal, J. R. \& Grimes, R. N. (1979). Inorg. Chem. 18, 257-263.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Wade, K. (1976). Adv. Inorg. Chem. Radiochem. 18, 1-66.
Zimmerman, G. J., Hall, L. W. \& Sneddon, L. G. (1980). Inorg. Chem. 19, 3642-3650.

Acta Cryst. (1983). C39, 858-860

Carbonatobis(triisopropylphosphine)platinum(II), $\mathbf{C}_{\mathbf{1 9}} \mathbf{H}_{\mathbf{4 2}} \mathbf{O}_{\mathbf{3}} \mathbf{P}_{\mathbf{2}} \mathbf{P t}$

By Glen B. Robertson and Paul A. Tucker*
Research School of Chemistry, The Australian National University, PO Box 4, Canberra, ACT 2600, Australia

(Received 28 February 1983; accepted 17 March 1983)

$5.862 \mathrm{~mm}^{-1}, T=295$ (2) K. Final $R=0.014$ for 3158 unique observed reflections. Principal bond lengths and angles are $\mathrm{Pt}-\mathrm{P} 2.263$ (1), $\mathrm{Pt}-\mathrm{O} 2.060(2),-\mathrm{O}-\mathrm{C}$ 1.330 (2), $\mathrm{C}=\mathrm{O} \quad 1.212$ (4) $\AA, \mathrm{P}-\mathrm{Pt}-\mathrm{P} \quad 108.04$ (4), $\mathrm{P}-\mathrm{Pt}-\mathrm{O} 93.98$ (5) and $\mathrm{O}-\mathrm{Pt}-\mathrm{O} 64.2(1)^{\circ}$. The molecular geometry is compared with that in the corresponding triphenylphosphine complex.

Introduction. Following our interest in the effects of steric interactions on transition metal-phosphine bond lengths (Mazid, Russell \& Tucker, 1980; Robertson \& Tucker, 1982) we have attempted, recently, to grow crystals of trans $-\mathrm{PtH}_{2}\left(\mathrm{P}^{i} \mathrm{Pr}_{3}\right)_{2}$ (1) suitable for X-ray and neutron diffraction analyses. The desired complex (1) was prepared by the method of Clark, Goel \& Wong (1978). Unexpectedly, however, attempted slow recrystallization of (1) from 2-methoxyethanol in air yielded crystals of the title compound (2) whose structure we now report. Attempts to obtain authentic crystals of (1), using inert atmosphere and vacuum sublimation techniques, are continuing.

Experimental. Laue symmetry $2 / m$, systematic absences $h 0 l$ for $l=2 n+1$, space group $P 2 / c$ (confirmed by structure solution); specimen crystal bounding faces, with perpendicular distances (cm) from one vertex, 100 (0.0020), $\overline{1} 00(0.0128), 10 \overline{2}(0.0088), \overline{1} 02(0.0105)$, 011 (0.0325), $01 \overline{1}(0.0345), 0 \overline{1} 1(0), 0 \overline{1} 1(0), 111$ (0.0300), 111 (0), $111(0.0373)$ and $\overline{1} 11(0.0020)$; Picker FACS-1 diffractometer, Mo $\mathrm{K} \alpha$ radiation, $\overline{2} \theta_{\text {max }}=60^{\circ}$, forms recorded $h, \pm k, \pm l, 7964$ reflections including standards (three every 97 data, indices 080 , 700 and 008), 3158 unique data $[I \geq 3 \sigma(I)]$, corrected for absorption (de Meulenaer \& Tompa, 1965; transmission factor range $0.1467-0.4264$) and for crystal degradation $\left[0.169(19) \times 10^{-4}\right.$ per measured reflection]; $R_{s}=0.009$ (Robertson \& Whimp, 1975) and $R_{\text {int }}\left(=\sum\left|F^{2}-<F^{2}>\right| / \sum F^{2}\right)=0.023$; cell dimensions from 12 reflections each with $2 \theta>40^{\circ}$; structure solved from Patterson and Fourier syntheses; refined by full-matrix least squares minimizing $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ with $w=\left[\sigma_{s}^{2}\left(F_{o}\right)+0.0005\left|F_{o}\right|^{2}\right]^{-1} \quad$ (Robertson \& Whimp, 1975), anisotropic thermal parameters for Pt, $\mathrm{P}, \mathrm{C}, \mathrm{O} ; \mathrm{H}$ atoms located from difference synthesis; H -atom coordinates and two average isotropic thermal parameters refined (one for methyl, one for methine H atoms); final $R=0.014, R_{w}=0.021$; maximum shift-to-error $=0.2$, average shift-to-error $=0.05 ; \quad\left(\rho_{o}-\right.$ $\left.\rho_{c}\right)$ max. $=0.75, \quad\left(\rho_{o}-\rho_{c}\right) \min .=-0.54 \mathrm{e} \AA^{-3} ; \quad X=$ 0.002 [in $F_{c}^{\text {corr. }}=F_{c}\left(1-0.0001 X F_{c}^{2} / \sin \theta\right)$]; atomic scattering amplitudes, with dispersion corrections for Pt , from International Tables for X-ray Crystallography (1974); computer programs ANUCRYS (McLaughlin, Taylor \& Whimp, 1977), SHELX76 (Sheldrick, 1976), PLUTO (Motherwell, 1978).

Discussion. Final atomic coordinates for non-H atoms are listed in Table 1 and principal bond lengths and bond angles are listed in Table 2.* The atom-numbering scheme is defined in Fig. 1.

[^0]Table 1. Atomic coordinates (with e.s.d.'s in parentheses) and equivalent isotropic thermal

	x	y	z	$U_{\text {eq }}{ }^{*}\left(\AA^{2}\right)$
Pt (1)	0.5	$0 \cdot 11248$ (1)	0.25	0.0189
P(1)	$0 \cdot 31863$ (5)	0.24672 (5)	0.22286 (5)	0.0215
C(11)	$0 \cdot 1349$ (2)	$0 \cdot 1699$ (2)	0.0901 (2)	0.0297
C(12)	0.1126 (3)	0.1631 (3)	-0.0337 (2)	0.0412
C(13)	-0.0067 (3)	0.2273 (3)	0.0674 (3)	0.0433
C(21)	0.3147 (2)	0.4321 (2)	0.2018 (2)	0.0259
C(22)	0.2713 (3)	0.4702 (2)	0.0748 (2)	0.0312
C(23)	0.2211 (3)	0.5153 (3)	$0 \cdot 2280$ (3)	0.0345
C(31)	0.3231 (3)	0.2278 (2)	0.3616 (2)	0.0302
C(32)	0.4729 (3)	0.2807 (2)	0.4795 (2)	0.0411
C(33)	0.2951 (4)	0.0832 (3)	0.3820 (3)	0.0417
C(1)	0.5	-0.1399 (3)	0.25	0.0266
O(1)	0.3863 (2)	-0.0637 (2)	0.2244 (2)	0.0289
O(2)	$0 \cdot 5$	-0.2624 (2)	0.25	0.0356

$$
{ }^{*} U_{\mathrm{eq}}=\frac{1}{3}\left(U_{11}+U_{22}+U_{33}+2 U_{23} \cos \alpha+2 U_{13} \cos \beta+2 U_{12} \cos \gamma\right) .
$$

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ (with e.s.d.'s in parentheses)

$\mathrm{Pt}(1)-\mathrm{P}(1)$	$2.2626(7)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.532(4)$
$\mathrm{Pt}(1)-\mathrm{O}(1)$	$2.060(2)$	$\mathrm{C}(11)-\mathrm{C}(13)$	$1.529(3)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.330(2)$	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.513(3)$
$\mathrm{C}(1)-\mathrm{O}(2)$	$1.212(4)$	$\mathrm{C}(21)-\mathrm{C}(23)$	$1.540(3)$
$\mathrm{P}(1)-\mathrm{C}(11)$	$1.855(2)$	$\mathrm{C}(31)-\mathrm{C}(32)$	$1.517(4)$
$\mathrm{P}(1)-\mathrm{C}(21)$	$1.854(2)$	$\mathrm{C}(31)-\mathrm{C}(33)$	$1.528(4)$
$\mathrm{P}(1)-\mathrm{C}(31)$	$1.855(2)$		
$\mathrm{Pt}(1)-\mathrm{P}(1)-\mathrm{C}(11)$	$105.2(1)$	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(21)$	$110.6(1)$
$\mathrm{Pt}(1)-\mathrm{P}(1)-\mathrm{C}(21)$	$122.6(1)$	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(31)$	$104.5(1)$
$\mathrm{Pt}(1)-\mathrm{P}(1)-\mathrm{C}(31)$	$108.9(1)$	$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{C}(31)$	$103.8(1)$
$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{O}(1)$	$93.98(5)$	$\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$113.6(2)$
$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{P}(1)^{\prime}$	$108.04(4)$	$\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(13)$	$115.6(2)$
$\mathrm{O}(1)-\mathrm{Pt}(1)-\mathrm{O}(1)^{\prime}$	$64.2(1)$	$\mathrm{P}(1)-\mathrm{C}(21)-\mathrm{C}(22)$	$112.4(2)$
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Pt}(1)$	$92.5(1)$	$\mathrm{P}(1)-\mathrm{C}(21)-\mathrm{C}(23)$	$116.6(2)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(1)^{\prime}$	$110.8(3)$	$\mathrm{P}(1)-\mathrm{C}(31)-\mathrm{C}(32)$	$110.0(2)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	$124.6(1)$	$\mathrm{P}(1)-\mathrm{C}(31)-\mathrm{C}(33)$	$113.5(2)$
		$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)$	$110.9(2)$
		$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(23)$	$110.2(2)$
		$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(33)$	$110.6(2)$

Fig. 1. The molecular geometry and atom numbering in the title compound.

Fig. 2. The molecular packing viewed approximately along the b axis.

Molecules of (2) have exact $C 2$ symmetry, with a crystallographic diad axis passing through $\mathrm{Pt}, \mathrm{C}(1)$ and O(2) (Fig. 1), and are separated by normal van der Waals interactions. The crystal-packing arrangement and the molecular stereochemistry are each illustrated in the stereopair of Fig. 2.

The $\overline{\mathrm{Pt}}-\mathrm{P}$ distance in (2) $[2.263$ (1) \AA] agrees well with the longer of the two inequivalent values [2.266 (5) and 2.223 (4) \AA] observed in the triphenylphosphine analogue, carbonatobis(triphenylphosphine)platinum(II), (3) (Cariati, Mason, Robertson \& Ugo, 1967; Robertson, 1968, unpublished data). $\mathrm{Pt}-\mathrm{O}$ distances [2.060 (2), (2); 2.049 (12) and 2.072 (11) \AA, (3)] and $\mathrm{O}-\mathrm{Pt}-\mathrm{O}$ angles [64.2 (1), (2); 63.4 (4) ${ }^{\circ}$, (3)] for (2) and (3) are also in excellent agreement. In contrast, and reflecting the increased steric requirement of triisopropyl vis à vis triphenylphosphine, the $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ angle in (2) $\left[108.04(4)^{\circ}\right]$ is some 9° greater than that in (3) [$98.6(2)^{\circ}$]. In a more crowded system the increased steric requirement of the triisopropylphosphine ligand might be expected to generate both angle and (bond) length changes. That the substantial angular strain in (2) is not accompanied by bond-length compression is, we suggest, simply a fortuitous consequence of the rather small steric requirement of the carbonato ligand.

Bond lengths in the phosphine ligand in (2) are unexceptional [av. P-C 1.855 (1), av. C-C 1.527 (9), av . C-H $1.00(6) \AA]^{*}$ and bond angles follow expec-

[^1]tations based on the detailed molecular geometry. Thus the largest $\mathrm{Pt}-\mathrm{P}-\mathrm{C}$ angle $[\mathrm{Pt}(1)-\mathrm{P}(1)-\mathrm{C}(21)$ $122.6(1)^{\circ}$] is associated with the (equivalent) closely contacting isopropyl groups $\mathrm{C}(2 n)$ and $\mathrm{C}(2 n)^{\prime}$ [directly below the P atoms in Fig. 2; $\mathrm{H} \cdots \mathrm{H} 2.18$ (6), 2.29 (6) Å]. Similarly, the largest $\mathrm{P}-\mathrm{C}-\mathrm{C}$ angle [$\left.\mathrm{P}(1)-\mathrm{C}(21)-\mathrm{C}(23) 116.6(2)^{\circ}\right]$ involves that methyl group [C(23)] making the shortest inter-isopropyl group contact $[\mathrm{C}(23) \mathrm{H}(3) \cdots \mathrm{C}(31) \mathrm{H} 2.01$ (6) \AA]. The $\mathrm{C}-\mathrm{C}-\mathrm{H}$ angles average $111(5)^{\circ}$ and the $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angles average $108(8)^{\circ}$. The geometry of the carbonato ligand is similar to that reported for other (bidentate) carbonato-transition-metal complexes [e.g. Cariati et al. (1967) and Woon, Mackay \& O'Connor (1980) and references therein].

We thank the Australian National University and Exeter University Computer Services Centres for the use of their facilities.

References

Cariati, F., Mason, R., Robertson, G. B. \& Ugo, R. (1967).J. Chem. Soc. Chem. Commun. p. 408.
Clark, H. C., Goel, A. B. \& Wong, C. S. (1978). J. Organomet. Chem. 152, C45-C47.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99-101, 149. Birmingham: Kynoch Press.
McLaughlin, G. M., Taylor, D. \& Whimp, P. O. (1977). ANUCRYS Structure Determination Package. Research School of Chemistry, Australian National Univ., Canberra.
Mazid, M. A., Russell, D. R. \& Tucker, P. A. (1980). J. Chem. Soc. Dalton Trans. pp. 1737-1742.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Motherwell, S. (1978). PLUTO78. Program for Plotling Molecular and Crystal Structures. Univ. of Cambridge, England.
Robertson, G. B. \& Tucker, P. A. (1982). J. Am. Chem. Soc. 104, 317-318.
Robertson, G. B. \& Whimp, P. O. (1975). J. Am. Chem. Soc. 97, 1051-1059.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Woon, T. C., MacKay, M. F. \& O'Connor, M. J. (1980) Acta Cryst. B36, 2033-2037.

[^0]: * Lists of observed and calculated structure amplitudes, anisotropic thermal parameters, H -atom coordinates, distances and angles involving H atoms, and inter- and intramolecular nonbonding contacts have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38475 (23 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Errors quoted in association with average bond lengths and bond angles are r.m.s. deviations from the mean value.

